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Contact-angle hysteresis in solid-on-solid wetting

Phil Attard
Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Australia

~Received 24 April 2000; revised manuscript received 1 September 2000; published 19 December 2000!

The spreading of an elastic adhesive sphere on a substrate is calculated using continuum elasticity theory and
the van der Waals interaction between the solid surfaces. The deformation and contact area are obtained
self-consistently as a function of load. Hysteresis is demonstrated between the loading and the unloading
cycles: the receding contact angle exceeds the advancing one. In addition, for a given deformation~flattening!,
or for a given applied load, the receding contact area exceeds the advancing one. This nonequilibrium phe-
nomenon is velocity dependent and in accord with experiments on adhesion and crack propagation.
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The angles between the phase boundaries at a line of t
phase contact depend upon the interfacial energies of
phases. For a liquid drop on a solid in a vapor the You
equation gives

gsv5gsl2g lv cosuslv , ~1!

where theg are the surface energies of the three interfac
and whereuslv is the contact angle. The Young equation m
be obtained by energy minimization, and it predicts a uniq
contact angle.

In practice there is not a single value; two values—
advancing and the receding—are generally measured.
contact angle hysteresis is in fact velocity dependent, w
the gap between the advancing and receding angles inc
ing with increasing velocity@1–3#. The existence of hyster
esis and dynamic effects indicates that the equilibration
three phase contact occurs over macroscopic time scales
that the thermodynamic driving force towards equilibrium
small compared to dissipative forces. Accordingly, t
Young equation gives theequilibrium contact angle, and i
would apply for an infinite amount of equilibration. In gen
eral energy minimization procedures yield the equilibriu
state, but they cannot describe hysteresis or the steady
due to dynamic effects.

Solid particles, such as fluid drops, also deform elastic
in response to an applied load or to interactions with a s
strate. The area of contact between the two solids grow
the applied load is increased, which is to say that the part
spreads on the substrate. Even at zero load an adhesive
ticle has a nonzero contact area, so that it may be said to
the substrate. In view of this obvious analogy between s
particles and fluid drops, one might also expect hysteres
the case of solid-on-solid wetting.

In the case of solids most attention has focused on t
adhesion or pull-off force. The classic JKR equation giv
the relationship between adhesionF and surface~or interfa-
cial! energyg @4#,

F52
3

2
pgR, ~2!

where R is the radius. As in the Young equation, this
derived by constrained free energy minimization, and as
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equilibrium result it cannot account for hysteresis in the pu
off force. In practice, large variability and hysteresis is oft
observed, particularly for soft bodies with large adhesio
~e.g., see Refs.@5–11#!.

Beyond JKR, which is a contact theory, the deformati
of the elastic solids and the pull-off force has been calcula
taking into account the finite range of the van der Wa
interaction@12–18#. These numerical studies agree that the
is hysteresis in the sense that the surfaces jumpin to contact
from a smaller tension than that which causes them to ju
out of contact. A rather more puzzling hysteresis was
vealed by the relatively sophisticated calculations of Atta
and Parker@18#. These showed that for soft solids with larg
adhesions, the loading and unloading branches did not c
cide even when the solids were in contact on both branc
This is qualitatively in accord with the experimental ev
dence@5–11# but it contradicts the widely used JKR resul

Here the mutual spreading of two elastic adhesive so
is reanalyzed in an effort to confirm the earlier results and
identify the physical origin of the hysteresis. Linear elastic
theory is used to obtain the local deformation of the sol
due to their interaction. With it the local separation betwe
the surfaces may be written@18#

h~r !5h0~r !2u~r !. ~3!

Here h0(r )5h01r 2/2R is the surface separation of the u
deformed solids at a distancer from the axis. For two
spheres with radiiR1 and R2 the effective radius isR21

[R1
211R2

21. The total elastic deformation is given b
@18,19#

u~r !5
22

E E
0

`

ps@h~ t !#k~r ,t !tdt, ~4!

where the elasticity parameter is given in terms of Youn
modulus and Poisson’s ratio of the bodies, 2/E[(1
2n1

2)/E11(12n2
2)/E2 , and where the kernel is expressib

in terms of the complete elliptic integral of the first kind
Finally, the mutual pressure acting between the surface
here taken to be a Lennard-Jones representation of the
der Waals attraction
©2000 The American Physical Society01-1
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ps~h!5
A

6ph3 F z0
6

h621G . ~5!

HereA is the Hamaker constant andz0 , which characterizes
the range of the short-range repulsion, is the equilibri
separation of planes under zero load. The total load~applied
force! is the integral of the Lennard-Jones pressure across
region between the deformed bodies@18#. The value of the
surface energy, which is used in making comparison w
JKR theory, isg5A/16pz0

2. It turns out that the elasticity
and adhesion may be combined into the dimensionless
rameter@18#, s5gAR/z0

3E2. Large values ofs correspond
to soft, adhesive particles.

The problem was discretized for numerical solution us
a uniform grid of 1000 nodes. Tests were made with up
2000 nodes and it was found that the results were not v
sensitive to the choice of grid or spacing. The diagonal e
ments of the kernel matrix were obtained by analytica
integrating the logarithmic singularity over the grid width.

As in a loading experiment with controlled displaceme
the solids are driven toward each other at a uniform r
beginning at a large separation such thatps(h0)'0. At each
discrete step in position~of size 0.05 nm!, new separation
deformation, and pressure profiles, Eqs.~3!, ~4!, and ~5!,
were calculated in turn, with a mixing parameter of up to 0
It typically took 500–1000 iterations per step in position f
the root mean square change in deformation to be less th
pm. Decreasing the convergence parameter to 0.1 pm
creased the number of iterations by about an order of m
nitude.

This numerical procedure duplicates the experimen
protocol of driving the surfaces toward each other at fix
velocity until the maximum load, at which point the motio
is reversed. The equilibration time for the deformation a
expansion of the contact area is controlled by the drive
locity in the experiments, and by the convergence param
in the computations. Reducing the speed of the solids
equivalent to increasing the number of iterations per s
The thermodynamic driving force determines the rapidity
convergence toward equilibrium in both the experiments
the computations. In these computations full equilibrium
never attained before the surfaces move on. The motion
pears to be overdamped, reaching a quasisteady state
depends upon the velocity of the solids.

Figure 1~A! shows the shape of the sphere as it defor
during loading against a planar substrate. Close inspectio
the profiles prior to contact shows that under the influence
the van der Waals attraction the surfaces bulge towards
other by an amount@18# d52AA2R/8Eh5/2. At a finite
separation the surfaces jump into contact due to an ela
instability @14,15#, the rate of energy decrease due to t
steep gradient of the van der Waals attraction exceeds
rate of energy increase of elastic deformation at a crit
separation@18# h* 5(3AA2R/8E)2/7.

Once in contact the surfaces appear flat, and on the s
of the figure there is a relatively sharp transition between
contact and noncontact regions. Accordingly, contact w
here defined as a local separation less than 1.1z050.55 nm.
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Other definitions of contact lead to qualitatively similar co
clusions. As the solids are pushed together the contact
expands, and the neck region becomes less pronounce
the case shown, the contact radius ranges from 0.2mm just
after the jump into contact to 0.4mm at the turning point.

Figure 1~B! compares in detail the surface profiles on t
loading and the unloading branches. At any given posit
h0 , the contact area is greater on the unloading branch t
on the loading branch. Indeed, after the direction of mot
of the solids has been reversed, the contact area continu
expand for a short time. This is due to the fact that t
contact area is still growing toward its equilibrium valu
when the load is reversed. The surfaces remain in contac
the unloading branchafter the positionh0* at which they
jumped into contact on approach.

It can be seen in Fig. 1~B! that during unloading the
sphere is more ‘‘stretched’’ than during loading. The exter
angle between the tangent of the deformed sphere~measured
in the apparently linear asymptotic region! and the planar
substrate isu1v2549.7 mrad on approach and 53.7 mrad

FIG. 1. ~A! The shape of an elastic sphere against a flat dur
loading (R510 mm, A510219 J, z050.5 nm, and E53
3108 N m22, which give g57.96 mN m21 and s57.50). The
curves are snapshots taken every 1.5 nm change in position, sta
at h058.5 nm at the top where the sphere is undeformed.~B! The
loading ~solid curves! and unloading~dashed curves! at the same
positions as in~A!. The shapes are coincident~bold solid curves! at
the turning point ath0525 nm, and at the furthest position from
contact ath058.5 nm. Note that the receding contact area is grea
than the advancing at the corresponding position, and that the
tact area ath0523.5 nm for unloading is actually greater than
the turning point ath0525 nm.
1-2
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CONTACT-ANGLE HYSTERESIS IN SOLID-ON-SOLID . . . PHYSICAL REVIEW E63 011601
separation.~The angle made by an undeformed sphere wo
be about 25 mrad.! That is, the receding contact angle
greater than the advancing one.

The velocity of the contact line is plotted in Fig. 2 for th
case when the sphere is driven with velocityḣ0
561 mm/s. ~The drive velocity is an independently spec
fied variable in the computations and in the experiments
they mimic.! The initial high rate of expansion of the conta
area following the jump into contact slows to a relative
steady value~'20 mm/s! as the load is increased. Immed
ately following the turn around the velocity briefly remain
positive ~continued expansion! before the contact are
shrinks at an increasing rate. At the point of maximum te
sion, the velocity of the contact line is approximately225
mm/s, and by the minimum contact area it is moving at o
2100 mm/s.

The inset to Fig. 2 shows the contact radius as a func
of load for both the loading and the unloading branches.
loading, while the contact radius monotonically increases
the bodies are driven toward each other, the load initia
decreases~becomes more negative!, following the jump into
contact, and then increases. The fact that the contact
grows to about 0.37mm, where it would remain with no
applied load, justifies these two solids being described
mutually ‘‘wetting.’’ The hysteresis between the loading a
the unloading branches is quite marked. At the same load
contact radius is greater on the unloading branch than on
loading branch. Upon unloading, the contact area does
begin to decrease significantly until the tension has increa
to several hundred nano-Newtons. The extreme tensio
557 nN, which occurs at a contact radius of 0.29mm, repre-
sents the pull-off force. In an experiment with controlle
load, this is the last stable point before the surfaces jump
of contact. In the present calculations the position rather t
the load is controlled, and results for the unstable region
which the radius decreases with decreasing tension are
given. The smallest contact radius exhibited, 0.14mm, at a

FIG. 2. The velocity of the contact radius as a function of t

position h0 of the sphere of Fig. 1 with a driving velocityḣ0

51 mm/s. The speed of the contact line is simply the change
radius between successive drive steps, times the drive velocity
vided by the step length. The zero of position corresponds to c
tact of the undeformed sphere, and positions prior to contact ha
positive value. Inset. The advancing and receding contact radiu
a function of load.
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tension of 339 nN, represents the absolute limit at which
surfaces can remain in contact.

Calculations have also been performed varying the ma
mum applied load~not shown!. In general the unloading
paths do not coincide, and in particular the pull-off for
increases with increasing applied load, confirming previo
results@18#. For large enough maximum loads, the unloadi
curves tend to coincide around the pull-off point and on
unstable portion of the curve, which implies a saturation
the pull-off force with maximum load.

The effect of the convergence parameter on the hyster
is explored in Fig. 3, which plots the contact radius agai
the position~undeformed separation! for two valuese51
and 0.1 pm. The number of iterations for each drive s
increased by about an order of magnitude. During loadi
the contact radius at a given position is larger in the sys
that has been given longer to equilibrate at each drive s
Conversely, during unloading, the contact area is smalle
the more slowly moving system. The result of this is that t
hysteresis decreases with increasing equilibration time.

Also shown in Fig. 3 is the JKR prediction for the conta
radius. As the driving speed of the solids is decreased and
equilibration time is increased, the contact radius on e
branch approaches the JKR prediction. This supports
conclusion that JKR theory, similar to the Young equation
an equilibrium theory that might possibly be applicable to
static measurement, if such a thing were possible. C
versely, the JKR theory cannot predict the adhesion or
formation in the case of hysteresis, which occurs due
the restricted equilibration of solids driven with nonze
velocities.

The inset of Fig. 3 shows steady state dynamic calcu
tions in which the force driving the change in contact rad
is balanced by a drag force proportional to its velocity,bȧ
1]U(d,a)/]a50 @20#. Here U is the Hertz and Johnso
elastic energy, expanded to second order about equilibri
andb is a drag coefficient. Although this is a contact theo
which is not as realistic as the van der Waals calculation
is a fully dynamic theory that uses a common model of fr

n
di-
n-

a
as

FIG. 3. The contact radius as a function of positionh0 for the
parameters of Fig. 1. The convergence parameter wase51 and 0.1
pm for the outer and inner curves, respectively. The single b
curve is the JKR equilibrium prediction. Inset. The dynamic JK
theory for a driving velocity of 1mm/s and drag coefficient ofb
50.3 and 0.1 g/s, for the outer and inner curves, respectively.
1-3
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PHIL ATTARD PHYSICAL REVIEW E 63 011601
tion and energy dissipation. It can be seen that a smaller
coefficient decreases the hysteresis between loading and
loading. Zero drag~or equivalently zero driving velocity!
yields the equilibrium JKR prediction. The similarity wit
the hysteresis displayed in the main figure supports the a
ment that the iteration procedure is quasidynamic and
the motion depends upon the thermodynamic distance f
equilibrium.

The present results qualitatively differ from the clas
JKR theory for the adhesion of elastic solids in that th
indicate the presence of hysteresis between loading and
loading. Hysteresis was found in the shape and in the con
area and angle, and identified as the cause of the lo
position hysteresis found in earlier work@18#. The contact
area is in general greater upon unloading than at the equ
lent point on the loading branch, that the shape of the s
faces differs on the two branches, and that the exterior c
tact angle is greater for the receding contact line than for
advancing one.

The hysteresis is not dueper seto the finite range of the
van der Waals attraction, or to the nonlinear nature of
elasticity equations. Rather, the classic equations of con
mechanics@4#, and the more recent numerical calculatio
@12–17#, were found to represent the equilibrium result~i.e.,
the constrained free energy minimum!, whereas the presen
results represent the steady state approach to equilibr
That is, the hysteresis depends upon the dynamics of
system, namely, the limited equilibration time allowed. T
deformation appears to approach its equilibrium value a
steady rate determined by the balance of thermodyna
~elastic and surface! forces and dissipative forces. Th
former decrease with decreasing distance from equilibriu
c

r-

m

es

H.
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and the latter increase with velocity, which damping effe
slows the speed of the contact line and prevents static e
librium being achieved. This viscoelastic effect, which
present in all solids, has measurable consequences in the
systems with large adhesions analyzed here. The hyste
can be decreased by using slower driving velocities~more
iterations per drive step! since this permits greater conve
gence towards equilibrium. It is not possible to perform
strictly static calculation~nor a static measurement! but it
appears that JKR theory is the limiting result for infinite
slow driving velocities.

The existence of contact angle hysteresis and the de
dence of the pull-off force on the maximum applied lo
found here are consistent with measured data in a br
range of solid-solid systems~e.g., see Refs.@5–11#!. In those
cases where the dynamics have been controlled,~and also
other adhesion and peeling experiments@21,22#!, the phe-
nomena has been shown to depend upon the speed o
measurements. Such hysteresis and its dynamic nature a
course well-known for liquid drops and for gas bubbles
contact with a solid@1–3#. Speculation about the cause of th
hysteresis, for both fluids and solids, usually invokes phy
cal roughness, chemical heterogeneity, or molecular r
rangement. The present calculations for ideal model surfa
suggest rather that these are not necessary for wetting
teresis, but rather that it is a general phenomenon wh
origin lies in the nature of elastic deformation of the so
and the macroscopic time scales for it to equilibrate.
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