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Contact-angle hysteresis in solid-on-solid wetting
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The spreading of an elastic adhesive sphere on a substrate is calculated using continuum elasticity theory and
the van der Waals interaction between the solid surfaces. The deformation and contact area are obtained
self-consistently as a function of load. Hysteresis is demonstrated between the loading and the unloading
cycles: the receding contact angle exceeds the advancing one. In addition, for a given defdiffatteoimg,
or for a given applied load, the receding contact area exceeds the advancing one. This nonequilibrium phe-
nomenon is velocity dependent and in accord with experiments on adhesion and crack propagation.
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The angles between the phase boundaries at a line of thregjuilibrium result it cannot account for hysteresis in the pull-
phase contact depend upon the interfacial energies of theff force. In practice, large variability and hysteresis is often
phases. For a liquid drop on a solid in a vapor the Youngbserved, particularly for soft bodies with large adhesions
equation gives (e.g., see Refg§5-11]).

Beyond JKR, which is a contact theory, the deformation
Yso="YsI— Vi, COSOg), , (1) of the elastic solids and the pull-off force has been calculated
taking into account the finite range of the van der Waals
where they are the surface energies of the three interfacesinteraction[12—18. These numerical studies agree that there
and wherédy, is the contact angle. The Young equation mayis hysteresis in the sense that the surfaces jinrp contact
be obtained by energy minimization, and it predicts a uniqguérom a smaller tension than that which causes them to jump
contact angle. out of contact. A rather more puzzling hysteresis was re-

In practice there is not a single value; two values—thevealed by the relatively sophisticated calculations of Attard
advancing and the receding—are generally measured. Thend Parkef18]. These showed that for soft solids with large
contact angle hysteresis is in fact velocity dependent, wittadhesions, the loading and unloading branches did not coin-
the gap between the advancing and receding angles increasde even when the solids were in contact on both branches.
ing with increasing velocity1-3]. The existence of hyster- This is qualitatively in accord with the experimental evi-
esis and dynamic effects indicates that the equilibration oflence[5—11] but it contradicts the widely used JKR result.
three phase contact occurs over macroscopic time scales, andHere the mutual spreading of two elastic adhesive solids
that the thermodynamic driving force towards equilibrium isis reanalyzed in an effort to confirm the earlier results and to
small compared to dissipative forces. Accordingly, theidentify the physical origin of the hysteresis. Linear elasticity
Young equation gives thequilibrium contact angle, and it theory is used to obtain the local deformation of the solids
would apply for an infinite amount of equilibration. In gen- due to their interaction. With it the local separation between
eral energy minimization procedures yield the equilibriumthe surfaces may be writtdA8]
state, but they cannot describe hysteresis or the steady state
due to dynamic effects. _ _

Solid particles, such as fluid drops, also deform elastically h(r)=ho(r) ~u(r). @
in response to an applied load or to interactions with a sub- ) .
strate. The area of contact between the two solids grows ddere ho(r)=ho+r?/2R is the surface separation of the un-
the applied load is increased, which is to say that the particldeformed solids at a distance from the axis. For two
spreads on the substrate. Even at zero load an adhesive paRheres with radiR; and R, the effective radius iR™*
ticle has a nonzero contact area, so that it may be said to wetR; *+R; . The total elastic deformation is given by
the substrate. In view of this obvious analogy between solid18,19
particles and fluid drops, one might also expect hysteresis in
the case of solid-on-solid wetting. —2 (=

In the case of solids most attention has focused on their u(r)= ?f p h(t)]k(r,t)tdt, 4
adhesion or pull-off force. The classic JKR equation gives 0
the relationship between adhesiBrand surfacdor interfa-

cial) energyy [4], where the elasticity parameter is given in terms of Young's
modulus and Poisson’s ratio of the bodies,E2/(1
I EW R @ - v2)/E,+ (1—v3)/E,, and where the kernel is expressible
2 T in terms of the complete elliptic integral of the first kind.

Finally, the mutual pressure acting between the surfaces is
where R is the radius. As in the Young equation, this is here taken to be a Lennard-Jones representation of the van
derived by constrained free energy minimization, and as ader Waals attraction
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HereA is the Hamaker constant amg, which characterizes g 13
the range of the short-range repulsion, is the equilibrium=<
separation of planes under zero load. The total l@guplied = 10
force) is the integral of the Lennard-Jones pressure across th
region between the deformed bodids]. The value of the
surface energy, which is used in making comparison with
JKR theory, isy=A/167z5. It turns out that the elasticity
and adhesion may be combined into the dimensionless pa
rameter[18], o= y\/R/zogEZ. Large values ofr correspond
to soft, adhesive particles.

The problem was discretized for numerical solution using
a uniform grid of 1000 nodes. Tests were made with up to
2000 nodes and it was found that the results were not very
sensitive to the choice of grid or spacing. The diagonal eIe-g

ments of the kernel matrix were obtained by analytically g
=

integrating the logarithmic singularity over the grid width.
As in a loading experiment with controlled displacement,
the solids are driven toward each other at a uniform rate
beginning at a large separation such thgty) ~0. At each ‘ ‘ ‘ : .
discrete step in positiofof size 0.05 niy new separation, 0.15 02 025 03 035 04 045
deformation, and pressure profiles, E¢3), (4), and (5),
were calculated in turn, with a mixing parameter of up to 0.2.
It typically took 500-1000 iterations per step in position for  F|G. 1. (A) The shape of an elastic sphere against a flat during
the root mean square change in deformation to be less thanidading ®=10 um, A=10"%° J, z,=0.5 nm, and E=3
pm. Decreasing the convergence parameter to 0.1 pm in<10° Nm™2, which give y=7.96 mNm* and o=7.50). The
creased the number of iterations by about an order of mageurves are snapshots taken every 1.5 nm change in position, starting
nitude. at hy=8.5nm at the top where the sphere is undeforntBy.The
This numerical procedure duplicates the experimentaloading (solid curveg and unloadingdashed curvesat the same
protocol of driving the surfaces toward each other at fixedpositions as ifA). The shapes are coincideffiold solid curvepat
velocity until the maximum load, at which point the motion the turning point ah,=—5 nm, and at the furthest position from
is reversed. The equilibration time for the deformation andcontact ah,=28.5nm. Note that the receding contact area is greater
expansion of the contact area is controlled by the drive vethan the advancing at the corresponding position, and that the con-
locity in the experiments, and by the convergence parametdfCt area afip=—3.5nm for unloading is actually greater than at
in the computations. Reducing the speed of the solids i turning point aty=—5 nm.
equivalent to increasing the number of iterations per step.
The thermodynamic driving force determines the rapidity ofOther definitions of contact lead to qualitatively similar con-
convergence toward equilibrium in both the experiments andlusions. As the solids are pushed together the contact area
the computations. In these computations full equilibrium isexpands, and the neck region becomes less pronounced. In
never attained before the surfaces move on. The motion aphe case shown, the contact radius ranges fromudn2just
pears to be overdamped, reaching a quasisteady state tlater the jump into contact to 0.4m at the turning point.
depends upon the velocity of the solids. Figure IB) compares in detail the surface profiles on the
Figure XA) shows the shape of the sphere as it deformdoading and the unloading branches. At any given position
during loading against a planar substrate. Close inspection ¢f,, the contact area is greater on the unloading branch than
the profiles prior to contact shows that under the influence oén the loading branch. Indeed, after the direction of motion
the van der Waals attraction the surfaces bulge towards ea@i the solids has been reversed, the contact area continues to
other by an amounf18] §=—A\2R/8Eh®2 At a finite  expand for a short time. This is due to the fact that the
separation the surfaces jump into contact due to an elastiwontact area is still growing toward its equilibrium value
instability [14,15, the rate of energy decrease due to thewhen the load is reversed. The surfaces remain in contact on
steep gradient of the van der Waals attraction exceeds thte unloading branclafter the positionhy at which they
rate of energy increase of elastic deformation at a criticajumped into contact on approach.
separatiorf18] h* = (3A/2R/8E)?". It can be seen in Fig. (B) that during unloading the
Once in contact the surfaces appear flat, and on the scasphere is more “stretched” than during loading. The exterior
of the figure there is a relatively sharp transition between thangle between the tangent of the deformed sptresasured
contact and noncontact regions. Accordingly, contact wa# the apparently linear asymptotic regjoand the planar
here defined as a local separation less thamy:0.55nm.  substrate i9¥,,,=49.7 mrad on approach and 53.7 mrad on

1 (pm)
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FIG. 2. The velocity of the contact radius as a function of the  FIG. 3. The contact radius as a function of positlgnfor the
position hy of the sphere of Fig. 1 with a driving velocitho parameters of Fig. 1. The convergence parameterewsl and 0.1
=1 um/s. The speed of the contact line is simply the change inom for the outer and inner curves, respectively. The single bold
radius between successive drive steps, times the drive velocity, deurve is the JKR equilibrium prediction. Inset. The dynamic JKR
vided by the step length. The zero of position corresponds to contheory for a driving velocity of lum/s and drag coefficient df
tact of the undeformed sphere, and positions prior to contact have 0.3 and 0.1 g/s, for the outer and inner curves, respectively.
positive value. Inset. The advancing and receding contact radius as

a function of load. tension of 339 nN, represents the absolute limit at which the

surfaces can remain in contact.

separation(The angle made by an undeformed sphere would ~ Calculations have also been performed varying the maxi-
be about 25 mraDi.That is, the receding contact angle is mum app“ed |Oad(not ShOWI). In genera| the un|0ading
greater than the advancing one. paths do not coincide, and in particular the pull-off force

The velocity of the contact line is plotted in Fig. 2 for the increases with increasing applied load, confirming previous
case when the sphere is driven with velocity, results[18]. For large enough maximum loads, the unloading
==+1 um/s. (The drive velocity is an independently speci- curves tend to coincide around the pull-off point and on the
fied variable in the computations and in the experiments thatinstable portion of the curve, which implies a saturation in
they mimic) The initial high rate of expansion of the contact the pull-off force with maximum load.
area following the jump into contact slows to a relatively The effect of the convergence parameter on the hysteresis
steady valug~20 um/9) as the load is increased. Immedi- is explored in Fig. 3, which plots the contact radius against
ately following the turn around the velocity briefly remains the position(undeformed separatiprfor two valuese=1
positive (continued expansionbefore the contact area and 0.1 pm. The number of iterations for each drive step
shrinks at an increasing rate. At the point of maximum ten-ncreased by about an order of magnitude. During loading,
sion, the velocity of the contact line is approximateh25  the contact radius at a given position is larger in the system
um/s, and by the minimum contact area it is moving at overthat has been given longer to equilibrate at each drive step.
—100 um/s. Conversely, during unloading, the contact area is smaller in

The inset to Fig. 2 shows the contact radius as a functiothe more slowly moving system. The result of this is that the
of load for both the loading and the unloading branches. Orysteresis decreases with increasing equilibration time.
loading, while the contact radius monotonically increases as Also shown in Fig. 3 is the JKR prediction for the contact
the bodies are driven toward each other, the load initiallyradius. As the driving speed of the solids is decreased and the
decreasegbecomes more negatiyegollowing the jump into  equilibration time is increased, the contact radius on each
contact, and then increases. The fact that the contact arésmanch approaches the JKR prediction. This supports the
grows to about 0.37um, where it would remain with no conclusion that JKR theory, similar to the Young equation, is
applied load, justifies these two solids being described aan equilibrium theory that might possibly be applicable to a
mutually “wetting.” The hysteresis between the loading andstatic measurement, if such a thing were possible. Con-
the unloading branches is quite marked. At the same load theersely, the JKR theory cannot predict the adhesion or de-
contact radius is greater on the unloading branch than on thfiermation in the case of hysteresis, which occurs due to
loading branch. Upon unloading, the contact area does ndhe restricted equilibration of solids driven with nonzero
begin to decrease significantly until the tension has increaseeelocities.
to several hundred nano-Newtons. The extreme tension of The inset of Fig. 3 shows steady state dynamic calcula-
557 nN, which occurs at a contact radius of 0429, repre-  tions in which the force driving the change in contact radius
sents the pull-off force. In an experiment with controlled is balanced by a drag force proportional to its velochig,
load, this is the last stable point before the surfaces jump out JU(§5,a)/da=0 [20]. Here U is the Hertz and Johnson
of contact. In the present calculations the position rather thaelastic energy, expanded to second order about equilibrium,
the load is controlled, and results for the unstable region irandb is a drag coefficient. Although this is a contact theory,
which the radius decreases with decreasing tension are alsehich is not as realistic as the van der Waals calculations, it
given. The smallest contact radius exhibited, O, at a is a fully dynamic theory that uses a common model of fric-
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tion and energy dissipation. It can be seen that a smaller draand the latter increase with velocity, which damping effect
coefficient decreases the hysteresis between loading and uslows the speed of the contact line and prevents static equi-
loading. Zero draglor equivalently zero driving velocity librium being achieved. This viscoelastic effect, which is
yields the equilibrium JKR prediction. The similarity with presentin all solids, has measurable consequences in the soft
the hysteresis displayed in the main figure supports the arggystems with large adhesions analyzed here. The hysteresis
ment that the iteration procedure is quasidynamic and thgtan be decreased by using slower driving velocitiesre

the motion depends upon the thermodynamic distance frorf{erations per drive stgpsince this permits greater conver-
equilibrium. gence towards equilibrium. It is not possible to perform a

The present results qualitatively differ from the classicStrictly static calculation(nor a static measuremeriut it

JKR theory for the adhesion of elastic solids in that theyaﬁj‘a\?zrrfvit:gtv‘éﬁiiézgory is the limiting result for infinitely

indicate the presence of hysteresis between loading and he The existence of contact angle hysteresis and the depen-

loading. Hysteresis was f°‘”?‘?' in the shape and in the conta ence of the pull-off force on the maximum applied load
area and angle, and identified as the cause of the loag-

" . . . ound here are consistent with measured data in a broad
posm.on. hysteresis found in earlier wc_)[k8]. The contact _ range of solid-solid systents.g., see Ref$5—11)). In those
area is in general greater upon unloading than at the equiVa;qas where the dynamics have been controliadd also
lent p0|_nt on the loading branch, that the shape of t_he SUlgther adhesion and peeling experimef4,22), the phe-
faces differs on the two branches, and that the exterior coryomena has been shown to depend upon the speed of the
tact angle is greater for the receding contact line than for thg,easurements. Such hysteresis and its dynamic nature are of
advancing one. . course well-known for liquid drops and for gas bubbles in
The hysteresis is not dyger seto the finite range of the  contact with a solid1—3]. Speculation about the cause of the
van der Waals attraction, or to the nonlinear nature of thg,ysteresis, for both fluids and solids, usually invokes physi-
elastlcny equations. Rather, the classic quaﬂons of cc_)ntaga| roughness, chemical heterogeneity, or molecular rear-
mechanicg4], and the more recent numerical calculations angement. The present calculations for ideal model surfaces
[12-17, were found to represent the equilibrium resiilt.,  gyggest rather that these are not necessary for wetting hys-
the constrained free energy minimymvhereas the present (eresis, but rather that it is a general phenomenon whose
results represent the steady state approach to equilibriumgyigin Jies in the nature of elastic deformation of the solid

That is, the hysteresis depends upon the dynamics of thg,q the macroscopic time scales for it to equilibrate.
system, namely, the limited equilibration time allowed. The

deformation appears to approach its equilibrium value at a The support of the Australian Research Council through
steady rate determined by the balance of thermodynamithe Special Research Center for Particle and Material Inter-
(elastic and surfageforces and dissipative forces. The faces at the lan Wark Research Institute is gratefully ac-
former decrease with decreasing distance from equilibriumknowledged.
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